Convolution Algebras: Relational Convolution, Generalised Modalities and Incidence Algebras
نویسندگان
چکیده
Convolution is a ubiquitous operation in mathematics and computing. The Kripke semantics for substructural and interval logics motivates its study for quantalevalued functions relative to ternary relations. The resulting notion of relational convolution leads to generalised binary and unary modal operators for qualitative and quantitative models, and to more conventional variants, when ternary relations arise from identities over partial semigroups. Convolution-based semantics for fragments of categorial, linear and incidence (segment or interval) logics are provided as qualitative applications. Quantitative examples include algebras of durations and mean values in the duration calculus.
منابع مشابه
Weighted Convolution Measure Algebras Characterized by Convolution Algebras
The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.
متن کاملPartial Semigroups and Convolution Algebras
Partial Semigroups are relevant to the foundations of quantum mechanics and combinatorics as well as to interval and separation logics. Convolution algebras can be understood either as algebras of generalised binary modalities over ternary Kripke frames, in particular over partial semigroups, or as algebras of quantale-valued functions which are equipped with a convolution-style operation of mu...
متن کاملAbstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...
متن کاملGeneralising Group Algebras
We generalise group algebras to other algebraic objects with bounded Hilbert space representation theory the generalised group algebras are called “host” algebras. The main property of a host algebra, is that its representation theory should be isomorphic (in the sense of the Gelfand–Raikov theorem) to a specified subset of representations of the algebraic object. Here we obtain both existence ...
متن کامل